

STANDARD DEHUMIDIFIERS

TECHNICAL MANUAL

INDEX

Declaration of conformity	page 3
Aim and contents of this manual	page 6
How to keep this manual	page 6
Graphyc symbols	page 6
Safety laws	page 7
General safety guidelines	page 7
Worker's health and safety	page 8
Protective equipment	page 8
Safety signs	page 8
Unit description	page 9
Other versions	page 10
Accessories	page 10
Technical data	page 11
Operation limits	page 18
Sound data	page 18
Safety device	page 19
Safety device setting	page 19
Electrical data	page 19
Inspection	page 20
Lifting and handling	page 20
Location and minimum technical clearances	page 20
Condensate draining connections	page 21
Ductwork unit connection	page 22
Connections for units with remote condenser in Z version	page 23
Refrigerant lay-out	page 24
Electrical connections	page 25
Start up	page 25
Signalling leds panel	page 26
Unit switch off	page 27
Energy saving	page 28
Maintenance and periodic checks	page 28
Refrigerant circuit repair	page 28
Environment protection	page 28
Unit out of service	page 28
Unit in alarm	page 29
Fault finding	page 29
Wiring diagrams	page 30
Dimensions	page 42

The FL manual, contains any information that is needed for a correct use of the equipment while safeguarding operator safety, according to what indicated in the actual directives on units safety.

AIM AND CONTENTS OF THIS MANUAL

This manual provides basic information on the installation, operation and maintenance off the FL unit. It is addressed to machine operators and it enables them to use the equipment efficiently, even if they do not have any previous specific knowledge of it. This manual describes the characteristics of the equipment at the time it is being put on the market; therefore it may not capture later technological improvements introduced by HIDROS SRL as part of its constant endeavour to enhance the performance, ergonomics, safety and functionality of its products.

HOW TO KEEP THIS MANUAL

The manual must be always with the unit it refers to. It must be stored in a safe place, away from the dust and moisture. It must be accessible to all users who shall consult it any time they are in doubt on how to operate the equipment.

HIDROS SRL reserves the right to modify its products and related manuals without necessarily updating previous versions of the reference material. The customer shall store any updated copy of the manual or parts of it delivered by the manufacturer as an attachment to this manual.

HIDROS SRL is available to give any detailed information about this manual and to give information regarding the use and the maintenance of its own units.

GRAPHIC SYMBOLS

Indicates operations that can be dangerous for people and/or disrupts the correct operation of the equipment..

Indicates prohibited operations.

Indicates important information that the operator must follow in order to guarantee the correct operation of the equipment in complete safety

SAFETY LAWS

The units single components or the complete units produced by HIDROS have been designed according to the actual CE and national Directives. For the detailed list of the project technical Directives, refer to the CE declaration enclosed.

GENERAL SAFETY GUIDELINES

Before beginning to operate on FL units every user must be perfectly knowledgeable about the functions of the equipment and its controls and must have read and understood the information container in this manual.

It's strictly forbidden to remove and/or camper with any safety device.

Any routine or not-routine maintenance operation shall be carried out when the equipment has been shut down, disconnected from electric and pneumatic power source and after its pneumatic system has been discharged.

Do not put your hands or insert screwdrivers, spanners or other tools into moving parts of the equipment.

The equipment supervisor and the maintenance man must receive training suitable for the performance of their tasks in safety

Operators must know how to use personal protective devices and must know the accident-prevention guidelines contained in national and international laws and norms.

WORKERS' HEALTH AND SAFETY

The European Community has emanated some Directives about worker's safety and health which the employers have to respect and make the others respect. For the detailed list, see the CE declaration enclosed.

Do not tamper with or replace parts of the equipment without the specific consent of the manufacturer. The manufacturer shall have no responsibility whatsoever in case of unauthorised operations.

Using components, expendable materials or spare parts that do not correspond to those recommended by the manufacturer and/or listed in this manual may be dangerous for the operators and/or damage the equipment

The operator's workplace must be kept clean, tidy and free from objects that may camper free movements. Appropriate lighting of the work place shall be provided so as to allow the operator to carry out the required operations safely. Poor or too strong lighting can cause risks.

Ensure that work places are always adequately ventilated and that aspirators are working, in good condition and in compliance with the requirements of the laws in force...

PERSONAL PROTECTIVE EQUIPMENT

When operating and maintaining the FL unit, use the following personal protective equipment.

Equipment: people who make maintenance or work with the unit, must wear an equipment in accordance with the safety Directives. They must wear accident prevention shoes with anti-slip sole where the paving is slippery.

Gloves: During the cleanings and the maintenance operations, it's necessary the use of appropriate gloves. In case of gas recharge, it's compulsory the use of appropriate gloves to avoid the risk of freezing.

Mask and googles: Respiratory protection (mask) and eye protection (goggles) should be used during cleaning and maintenance operations.

SAFETY SIGNS

The equipment features the following safety signs, which must be complied with:

General hazard

Electric shock hazard

UNIT DESCRIPTION

FL dehumidifiers series are high-performances units especially designed for industrial or commercial purposes where humidity level should be controlled or water vapour condensation should be prevented. These units are particularly indicated for archives, ironing rooms, cheese factories, underground rooms, cellars and industrial sites where high humidity level is present

Frame

All FL units are made from hot-galvanised thick sheet metal, painted with polyurethane powder enamel at 180°C to ensure the best resistance against the atmospheric agents. The frame is self-supporting with removable panels. The drip tray is present standard in all FL units and it's in stainless steel. The colour of the units is RAL 7035

Refrigerant circuit

The refrigerant gas used in these units is R407C. The refrigerant circuit is made by using international primary brands components and according to ISO 97/23 concerning welding procedures. The refrigerant circuit includes:

filter drier.

thermal expansion valve with external equalizer, Schrader valves form maintenance and control, pressure safety device (according to PED regulation)

Compressors

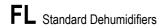
The compressor is scroll type with crankcase heater and thermal overload protection by a klixon embedded in the motor winding. It's mounted on rubber vibration dampers and, by request, it can be supplied with some jackets to reduce the noise (accessory). The crankcase heater, when present, is always powered when the compressor is in stand-by. The inspection is possible through the frontal panel of the unit.

Condensers and evaporators

The condensers and evaporators are made of copper pipes and aluminium fins. The diameter of the copper pipes is 3/8" and the thickness of the aluminium fins is 0,1 mm. The tubes are mechanically expanded into the aluminium fins to improve the heat exchange factor. The geometry of these condensers guarantees a low air side pressure drop and then the use of low rotation (and low noise emission) fans. All the units have a stainless steel drip tray. Besides this, each evaporator is supplied of a temperature probe used as automatic antifreeze probe.

Fans

The fan is centrifugal type. It's statically and dynamically balanced and supplied complete of the safety fan guard according to EN 294. It's mounted on the unit frame by interposition of rubber vibration dampers. The electric motor is at 4 poles (about 1500 rpm). Connected to the fan by belts and pulleys and it's equipped of an integrated thermal overload protection. The protection class of the motors is IP 54.


Air Filter

It's supplied standard with the unit. It's made of filtering material in synthetic fibre without electrostatic charge. It can be removed for differential disposal, class G3, according to EN 779:2002

Electric box

The electric switch board is made according to electromagnetic compatibility norms CEE 73/23 and 89/336. The accessibility to the board is possible after removing the front panel of the unit and the OFF positioning of the main switch. The moisture protection degree is IP44. In all FL units are installed, standard, the compressors sequence relay who disables the operation of the compressor in case the power supply phase sequence is not the correct one (scroll compressors in fact, can be damaged if they rotate reverse wise). The following components are also standard installed: main switch, magnetic-thermal switches (as a protection of the fans), compressors fuses, control circuit automatic breakers, compressor contactors. The terminal board is also supplied with voltage free contacts for remote ON-OFF.

All FL units are supplied standard with microprocessor controls. The microprocessor controls the following functions: compressor timing, automatic defrost cycles, the management of fresh and exhaust air, post heating valve and alarms. An appropriate LCD display shows the operation mode of the unit, set point and alarms

Control and protection devices

All units are supplied with the following control and protection devices: defrost thermostat, who signals to the microprocessor control that a defrost cycle is needed and controls its termination, high pressure switch with manual reset, low pressure switch with automatic reset, high pressure safety valve, compressor thermal overload protection, fans thermal overload protection

Test

All the units are fully assembled and wired at the factory, carefully evacuated and dried after leak tests under pressure and then charged with refrigerant R407C. They are all fully operational tested before shipment. They all conform to European Directives and are individually marked with the CE label and provided with Conformity Declaration

OTHER VERSIONS

HOT GAS DEFROST VERSION (S): Beside the components of the standard version, the unit is supplied with a solenoid valves set for the hot gas injection in case of ice presence. The hot gas injection allows a faster defrost time and this permits to use this unit in ambients with lower temperatures (down to 1°C) compared to the standard version.

TEMPERATURE CONTROL VERSION (FLZ): These units are equipped of an external remote condenser and needs to be connected to the dehumidifier through refrigerant connections. The remote condenser is supplied, standard, of a main switch and a fan speed controller. The use of the remote condenser allows the control of temperature and humidity at the same time, operating in cooling or dehumidifying mode. All the units of FLZ series, to work correctly, have to be connected to a thermostat and a humidistat

ACCESSORIES

Remote mechanical hygrostat: supplied with a regulation knob and working range from 30% to 100% with precision

of 3%.

Condensate discharge pump: Package centrifugal type, high static pressure, supplied with water tank, one way valve

and level floating sensor. The pump is supplied with an alarm contact who stops the

compressor of the unit in case of faulty operation.

Available static pressure: with high efficiency fan; available till 200 pa.

Version for outdoor installation: Suitable for outdoor installation.

Air filter with ducted installation: Complete with EU2 efficiency air filter which can be removed by the side and frame for

ducted installation.

Floor trolley version: To be used with movable applications. They are not available for ITMZ versions

FL - FLZ **TECHNICAL DATA**

Mod.		560	560Z	740	740Z	940	940Z
Refrigerant		R407C	R407C	R407C	R407C	R407C	R407C
Dehumidification capacity (1)	l/24h	564,1	564,1	738,5	738,5	937,3	937,3
Cooling capacity (2)	kW		26,5		34,6		43,8
Compressor input power (1)	kW	8,7	9,1	11,3	11,7	14,9	15,3
Maximum input power (1)	kW	9,5	9,9	12,4	12,8	16,4	16,8
Nominal input current (1)	A	15,5	19,1	18,7	22,3	24,7	28,5
Maximum input current	A	17,0	20,5	20,5	24,1	27,4	31
Power supply	V/Ph/Hz			400/3	+N/50		
Total air flow	m3/s	1,430	1,430	1,903	1,903	2,277	2,277
Supply fan available static pressure	Pa	50	50	50	50	50	50
	tipo	SCROLL					
Compressor	n°	1	1	1	1	1	1
Refrigerants circuits	n°	1	1	1	1	1	1
Steppower control		1	1	1	1	1	1
Sound power level	dB(A)	79	79	80	80	81	81
Sound pressure level	dB(A)	72	72	73	73	74	74
Lenght	mm	1630	1630	1630	1630	1630	1630
Width	mm	1010	1010	1010	1010	1010	1010
Height	mm	1410	1410	1410	1410	1410	1410
Weight	Kg	390	390	412	412	439	439

TECHNICAL DATA REMOTE CONDENSERS

Mod.		560	560Z	740	740Z	940	940Z
Refrigerant			R407C		R407C		R407C
Maximum input current	Α		5,0		5,0		5,0
Power supply	V/Ph/Hz			230/	1/50		
Total air flow	m3/s		3,2		3,2		3,2
Sound power level (5)	dB(A)		75		75		75
Sound pressure level (7)	dB(A)		47		47		47
Lenght	mm		1292		1292		1602
Width	mm		480		480		480
Height	mm		610		1010		1060
Weight	Kg		53		65		90

- Performances are referred to the following conditions:
 (1 Ambient temperature 30 °C relative humidity 80%;
 (2) Ambient temperature 30 °C relative humidity 80%; ambient temperature 35°C.
 (5) Sound power level calculated according to ISO 3746.
 (6) Sound pressure level measured in free field, at 1 mt from the unit, directional factor Q=2 according to ISO 3746.
 (7 Sound pressure level measured in free field, at 10 mt from the unit, directional factor Q=2 according to ISO 3746.

FL 560 PERFORMANCE TABLES

ıt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
A	Relative humidity 50%				
10°C	83,0	4,9	4,2	8,0	
15°C	101,5	5,2	4,7	8,9	
20°C	147,2	5,8	5,8	10,8	
25°C	210,7	6,5	7,3	13,4	
30°C	271,3	7,4	8,8	16,0	
35°C	324,2	8,1	10,1	18,2	

nt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
tem	Relative humidity 60%				
10°C	109,3	4,9	4,6	8,8	
15°C	150,2	5,3	5,6	10,4	
20°C	206,2	5,9	6,8	12,6	
25°C	288,6	6,7	8,6	15,7	
30°C	369,5	7,5	10,5	18,9	
35°C	435,9	8,3	12,0	21,6	

rt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
tem tem	Relative humidity 70%				
10°C	140,6	5,0	5,2	9,8	
15°C	197,1	5,5	6,4	11,9	
20°C	247,5	6,1	8,1	14,8	
25°C	362,0	6,9	10,0	18,1	
30°C	461,6	7,7	12,1	21,8	
35°C	522,8	8,6	13,6	24,4	

r e	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
tem	Relative humidity 80%				
10°C	172,3	5,0	5,7	10,7	
15°C	247,0	5,6	7,3	13,4	
20°C	342,8	6,2	8,1	14,8	
25°C	442,8	7,0	11,4	20,5	
30°C	564,1	7,9	13,9	24,9	
35°C	630,5	8,7	15,5	27,6	

FL 740 PERFORMANCE TABLES

rt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
tem tem	Relative humidity 50%				
10°C	113,5	6,2	4,1	10,5	
15°C	138,2	6,6	4,6	11,6	
20°C	198,0	7,4	5,7	14,2	
25°C	280,5	8,4	7,1	17,6	
30°C	358,5	9,5	8,6	20,9	
35°C	427,9	10,5	9,9	24,0	

nt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
tem	Relative humidity 60%				
10°C	149,4	6,2	4,5	11,6	
15°C	203,4	6,7	5,5	13,7	
20°C	276,1	7,5	6,7	16,6	
25°C	382,7	8,5	8,5	20,7	
30°C	486,5	9,7	10,3	24,8	
35°C	573,3	10,8	11,8	28,4	

ıt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
A tem	Relative humidity 70%				
10°C	191,6	6,3	5,1	13,0	
15°C	265,7	7,0	6,3	15,7	
20°C	366,3	7,8	7,9	19,4	
25°C	478,7	8,8	9,8	23,7	
30°C	606,2	10,0	11,9	28,6	
35°C	686,2	11,1	13,4	32,0	

r e	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
tem t	Relative humidity 80%				
10°C	234,9	6,3	5,7	14,2	
15°C	331,8	7,1	7,2	17,8	
20°C	455,4	7,9	9,1	22,2	
25°C	583,5	9,0	11,2	26,9	
30°C	738,5	10,2	13,6	32,6	
35°C	824,8	11,3	15,2	36,2	

FL 940 PERFORMANCE TABLES

ıt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
A	Relative humidity 50%				
10°C	146,0	8,0	4,4	13,7	
15°C	178,0	8,6	5,0	15,2	
20°C	254,4	9,6	6,1	18,5	
25°C	359,7	11,0	7,7	22,8	
30°C	458,3	12,5	9,3	27,2	
35°C	547,3	13,8	10,7	31,1	

nt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient	
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]	
tem t	Relative humidity 60%				
10°C	192,0	8,0	4,9	15,1	
15°C	261,1	8,8	5,9	17,8	
20°C	353,7	9,9	7,3	21,6	
25°C	489,1	11,2	9,2	26,8	
30°C	620,1	12,7	11,1	32,1	
35°C	731,3	14,1	12,7	36,7	

rt ure	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]
tem tem	Relative humidity 70%			
10°C	246,4	8,3	5,6	16,9
15°C	340,7	9,1	6,9	20,5
20°C	468,5	10,2	8,6	25,2
25°C	610,9	11,6	10,6	30,7
30°C	771,6	13,1	12,8	36,9
35°C	874,0	14,6	14,4	41,3

r n	Dehumidification capacity	Input Power	Air temperature increase	Thermal charge in ambient
Ambient temperature	[l/24h]	[kW]	[°C]	[kW]
tem	Relative humidity 80%			
10°C	302,0	8,3	6,1	18,5
15°C	424,7	9,3	7,8	23,0
20°C	580,8	10,4	9,8	28,7
25°C	742,4	11,8	12,0	34,7
30°C	937,3	13,4	14,6	41,9
35°C	1047,8	14,9	16,3	46,6

FL 560 Z PERFORMANCE TABLES

rt ure	Dehumidification capacity	Total cooling capacity	Input Power	
Ambient temperatu	[l/24h]	[kW]	[kW]	
A	Relative humidity 50%			
10°C	68,8	7,7	5,3	
15°C	101,8	10,2	6,0	
20°C	137,9	12,9	6,3	
25°C	211,5	16,9	7,0	
30°C	272,2	21,4	7,3	
35°C	338,6	24,7	7,6	

nt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient temperatu	[l/24h]	[kW]	[kW]
A tem		Relative humidity 60%	
10°C	103,3	8,3	5,4
15°C	150,2	11,0	5,9
20°C	206,2	14,1	6,4
25°C	288,6	18,3	7,0
30°C	369,5	23,1	7,4
35°C	435,9	26,5	7,7

rt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient temperatui	[l/24h]	[kW]	[kW]
A		Relative humidity 70%	
10°C	137,8	8,9	5,5
15°C	198,6	11,8	6,1
20°C	274,5	15,3	6,7
25°C	365,7	19,7	7,1
30°C	466,8	24,8	7,6
35°C	533,2	28,3	7,8

nt ure	Dehumidification capacity	Total cooling capacity	Input Power		
Ambient	[l/24h]	[kW]	[kW]		
A		Relative humidity 80%			
10°C	172,3	9,5	5,6		
15°C	247,0	12,7	6,2		
20°C	342,8	16,5	6,8		
25°C	442,8	21,1	7,2		
30°C	564,1	26,5	7,7		
35°C	630,5	30,1	7,9		

FL 740 Z PERFORMANCE TABLES

rt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient temperatu	[l/24h]	[kW]	[kW]
tem		Relative humidity 50%	
10°C	95,3	10,8	6,7
15°C	139,2	14,1	7,4
20°C	186,5	17,6	8,1
25°C	282,3	22,5	8,8
30°C	351,5	28,3	9,5
35°C	447,6	34,4	9,8

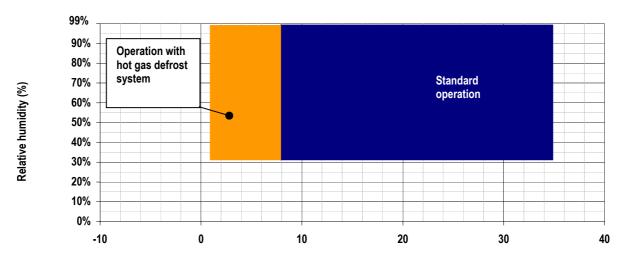
nt ure	Dehumidification capacity	Total cooling capacity	Input Power	
Ambient temperatui	[l/24h]	[kW]	[kW]	
A tem	Relative humidity 60%			
10°C	141,8	11,6	6,8	
15°C	203,4	15,1	7,5	
20°C	276,1	19,1	8,2	
25°C	382,7	24,3	8,9	
30°C	486,5	30,4	9,6	
35°C	573,3	34,6	9,9	

rt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient mperatui	[l/24h]	[kW]	[kW]
Ambi		Relative humidity 70%	
10°C	188,3	12,3	7,0
15°C	267,6	16,1	7,7
20°C	365,7	20,6	8,5
25°C	483,1	26,1	9,1
30°C	612,5	32,5	9,8
35°C	699,0	36,8	10,0

nt ure	Dehumidification capacity	Total cooling capacity	Input Power	
Ambient temperatur	[l/24h]	[kW]	[kW]	
A	Relative humidity 80%			
10°C	234,9	13,1	7,1	
15°C	331,8	17,2	7,9	
20°C	455,4	22,1	8,7	
25°C	583,5	27,9	9,3	
30°C	738,5	34,6	9,9	
35°C	824,8	39,1	10,2	

FL 940 Z PERFORMANCE TABLES

rt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient temperature	[l/24h]	[kW]	[kW]
A tem		Relative humidity 50%	
10°C	123,1	14,7	8,8
15°C	133,1	18,5	9,7
20°C	240,2	22,9	10,6
25°C	362,5	29,0	11,6
30°C	461,5	36,2	12,5
35°C	573,1	41,1	13,0


nt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient temperatui	[l/24h]	[kW]	[kW]
A tem		Relative humidity 60%	
10°C	182,7	15,6	8,9
15°C	261,1	19,8	9,8
20°C	353,7	24,8	10,7
25°C	489,1	31,2	11,7
30°C	620,1	38,7	12,6
35°C	731,3	43,8	13,1

rt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient temperatur	[l/24h]	[kW]	[kW]
A		Relative humidity 70%	
10°C	242,3	16,5	9,1
15°C	389,2	21,1	10,1
20°C	467,2	26,7	11,1
25°C	615,7	33,4	11,9
30°C	778,7	41,2	12,8
35°C	889,5	46,5	13,3

nt ure	Dehumidification capacity	Total cooling capacity	Input Power
Ambient temperatur	[l/24h]	[kW]	
A tem		Relative humidity 80%	
10°C	302,0	17,4	9,3
15°C	424,7	22,5	10,3
20°C	580,8	28,6	11,3
25°C	742,4	35,6	12,2
30°C	937,3	43,8	13,1
35°C	1047,8	49,3	13,5

OPERATION LIMITS

Fresh air temperature (°C)

Ambient temperatures

FL units are designed to operate with ambient temperatures from 1°C to 35°C, relative humidity from 50% to 99%

WARNING: The units MUST be used within the operation limit indicated in the diagrams (see above). the warranty will be invalidated if the units are used in ambient conditions outside the limits reported. If there is the necessity to operate in different conditions, please contact our technical office

	SOUND DATA INTERNAL UNIT											
Octave band (Hz)									L	w	Lp1	
Mod.	63	125	250	500	1K	2K	4K	8K	dB	AD/A)	dD(A)	
	dB	dB	dB	dB	dB	dB	dB	dB	ив	dB(A)	dB(A)	
560	92,1	83,3	77,2	75,7	74,6	69,2	65,8	56,7	92,9	79	72	
740	93,1	84,3	78,2	76,7	75,6	70,2	66,8	57,7	93,9	80	73	
940	94,1	85,3	79,2	77,7	76,6	71,2	67,8	58,7	94,9	81	74	

	SOUND DATA EXTERNAL UNIT (ONLY FOR Z VERSION)										
					L	w	Lp2				
Mod.	63	125	250	500	1K	2K	4K	8K	٩D	4D/A)	AD(A)
	dB	dB	dB	dB	dB	dB	dB	dB	dB dB(A)	ub(A)	dB(A)
560	88,1	79,3	73,2	71,7	70,6	65,2	61,8	52,7	88,9	75	47
740	88,1	79,3	73,2	71,7	70,6	65,2	61,8	52,7	88,9	75	47
940	88,1	79,3	73,2	71,7	70,6	65,2	61,8	52,7	88,9	75	47

Lw: Sound power level according to ISO 3746.

Lp1: Sound pressure level measured at 1 mt from the unit in free field conditions direction factor Q=2 according to ISO 3746.

Lp2: Sound pressure level measured at 10 mt from the unit in free field conditions direction factor Q=2 according to ISO 3746

SAFETY DEVICE

The frost on the coil, obstructs the air flow, reduces the available exchange area and consequently the unit performances and can seriously damage the system. All the units are supplied, standard, with a control which defrost automatically the heat exchanger if necessary. This control provides a temperature probe (defrost thermostat) on the unit evaporator. When the defrost cycle is required, the microprocessor control (according to set parameters) starts working (the yellow led turns on) according to these modalities:

- air defrost: the compressor is switched off while the fan keeps on working.
- <u>hot gas defrost</u>: the fan is switched off while the compressor keeps on working. An appropriate switching on the refrigerant system is activated.

For both the modalities, at the end of the defrost cycle, there is the dripping time (the green led starts flashing

HUMIDITY CONTROL SWITCH

Humidity control switch enables or disables unit operation depending on the humidity value desired.

To verify its correct operation, rotate the control knob clock wise (or set the desired value through the instrument keyboard if a keyboard instrument should be present) and set the humidity desired value close to lower limit. At this point verify that fan and compressor (after a time delay) will be started in sequence. Verify as well that the unit is stopped when humidity set is reached

TEMPERATURE CONTROL SWITCH (optional)

Temperature control switch (control temperature version unit only) enables or disables unit operation depending on the temperature value desired.

To verify its correct operation, rotate the control knob clock wise (or set the desired value through the instrument keyboard if a keyboard instrument should be present) and set the temperature desired value close to lower limit. At this point verify the fan is all the time running and that compressor, after a time delay, is started.

Verify as well that the compressor is stopped when temperature set is reached.

If temperature switch should be present, it takes priority on the humidity switch. The humidity switch is enabled only when temperature set is reached.

HIGH PRESSURE SWITCH

The high pressure switch stops the unit when the condensing pressure is higher than the set value. The restart is manual (you need to press the button on the pressure switch) and it can be carried out only when the pressure is under the value indicated by the differential set (see table below).

LOW PRESSURE SWITCH

The low pressure switch stops the unit when the evaporation pressure is lower than the set value. The restart is automatic and it is only possible when the pressure back over the value indicated by the differential set (see table below).

DEFROST THERMOSTAT

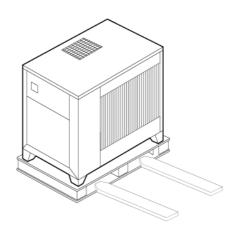
It's a device which signals to the electronic control, the necessity to make the defrost cycle. Once the defrost cycle is activated, the defrost thermostat determines also its conclusion

SAFETY DEVICE SETTING

V. I.						
Device		Set-point	Differential	Reset type		
Antifreeze thermostat	°C	1	3	MANUAL		
High pressure switch	Bar	26	7,7	MANUAL		
Low pressure switch	Bar	0,7	1	MANUAL		

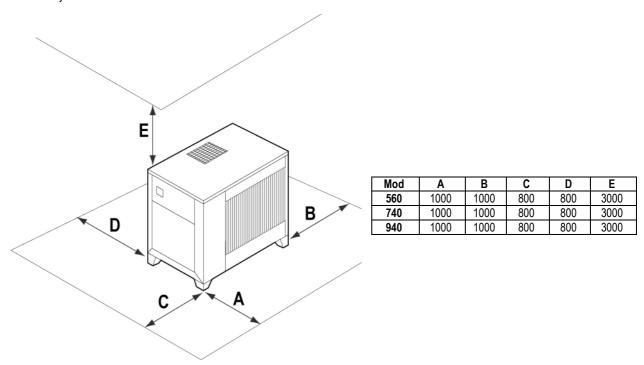
ELECTRICAL DATA

Power supply	V/~/Hz	400 / 3+N/ 50	Control circuit	V/~/Hz	24 / 1 / 50
Auxiliary circuit	V/~/Hz	230 / 1 / 50	Fans power supply	V/~/Hz	400 / 3 / 50
Remote condenser fan supply	V/~/Hz	230 / 1 / 50			



INSPECTION

When installing or servicing the unit, it is necessary to strictly follow the rules reported on this manual, to conform to all the specifications of the labels on the unit, and to take any possible precautions of the case. Not observing the rules reported on this manual can create dangerous situations. After receiving the unit, immediately check its integrity. The unit left the factory in perfect condition; any eventual damage must be questioned to the carrier and recorded on the Delivery Note before it is signed. HIDROS must be informed, within 8 days, of the extent of the damage. The Customer should prepare a written statement of any severe damage.


When unloading the unit, it is highly recommended to avoid any sudden move in order to protect refrigerant circuit, copper tubes or any other unit component. Units can be lifted by using a forklift or, in alternative, using belts, being sure that the method of lifting does not damage the lateral panels and the cover. It is important to keep the unit horizontal at all time to avoid damages the internal to components.

LIFTING AND HANDLING

LOCATION AND MINIMUM TECHNICAL CLEARANCES

FL units are designed for internal installation; it is advisable to create a proper basement, with a size similar to unit foot-print. Unit vibration level is very low: it is advisable however, to fit a rigid rubber band between basement and unit base-frame. If it is the case, it is possible to install anti-vibration mounts (spring or rubber), to keep vibrations at a very low level. Absolute care must be taken to ensure adequate minimum technical clearances, necessary to guarantee checking and maintenance operation. For these reasons it is necessary to observe the clearances indicated in the below table.

WARNING: The unit should be installed so that maintenance and/or repair services be possible. The warranty does not cover costs due to lifting apparatus, platforms or other lifting systems required by the warranty interventions

WARNING: All the maintenance operation must be done by TRAINED PEOPLE only.

WARNING: Before every operation of servicing on the unit, be sure that the electric supply is disconnected.

WARNING: Inside the unit some moving components are present. Be very careful when operating in their surroundings even if the electric supply is disconnected.

WARNING: The top shell and discharge line of compressor are usually at high temperature level. Be very careful when operating in their surroundings.

WARNING: Aluminium coil fins are very sharp and can cause serious wounds. Be very careful when operating in their surroundings.

WARNING: After servicing operation close the unit with cover panels, fixing them with locking screws.

CONDENSATE DRAINING CONNECTIONS

Condensate draining should be done with a rubber pipe passing through the condensate draining connection located on the suction side of the unit. The discharge hole is located inside the unit and with a 3/4" female thread diameter. On the condensate discharge pipe it must be installed a syphon with a minimum height equal to the suction pressure of the fan.

DUCTWORK UNIT CONNECTION

All the FL units are supplied with ductable centrifugal fan.

If it's necessary to duct only the discharge side, use a flange with overall dimensions larger than the mouth of the fan, on the superior part of the unit (refer to the dimensional drawing of the unit).

If also the suction side has to be ducted, remove the filter panel, use a flange with overall dimensions larger than the suction opening on the front on the unit. Take care to install always a filter on the suction side.

WARNING: It is extremely important to fit a filter on the suction side otherwise the operation mode of the units can be compromised or damaged.

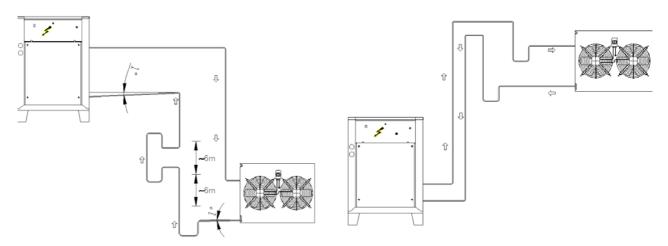
WARNING: When ductworks are connected it is IMPORTANT to check if the airspeed through the evaporator is around +/-15%. This parameter allows the unit to operate with the maximum efficiency.

STANDARD UNIT

UNIT WITH FRAME FOR DUCTED INSTALLATION

REFRIGERANT CONNECTIONS FOR Z VERSIONS

Inspection


The Z version units are supplied of a remote condenser and they need to be connected with the dehumidifier through refrigerant ines. The remote condenser is equipped of a main switch and a fan speed control. Please refer to the following paragraphers for the regrigerant connections and to the next chapter for the electrical ones.

Line path/course and max. distance between the sections

For the units in Z version with separate sections, the path/course of the refrigerant pipes is influenced by the location of the sections themselves and by the structure of the building. The pipes have to be in any case as short as possible, so that they can contain/hold the charge lacks and reduce the quantity of refrigerant present in the refrigerant circuit: The connections must be isolated and their length must not exceed 30 m. Our Company is available for any information even in case of applications not included in the limits indicated above.

Indications for the realisations of the refrigerant connection

According to the relative position of the dehumidifier and of the remote condenser, there are some indications to follow regarding the realisation of the refrigerant connection.

Motocondensing unit installed at a higher level than the evaporation section:

- a) On the rising vertical pipes, oil traps should be fitted every 6 metres to allow oil circulation in the system:
- b) Install a collection pit immediately downstream from the bulb of the thermostatic valve;
- c) On horizontal suction pipelines a minimum 1% slope should be allowed in order to let the oil easily come back to compressor. Pipelines diameter can be read in Table II depending on the unit size and the length of refrigerant pipelines

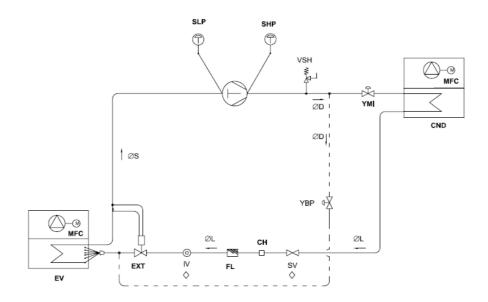
Motocondensing unit installed at a lower level than the evaporation section:

- a) Install a liquid trap on suction line at the evaporator outlet whit the same height of the evaporator so that liquid refrigerant, when the system is not running, will not fall into compressor;
- b) On horizontal suction pipelines a minimum 1% slope should be allowed in order to let the oil easily come back to compressor

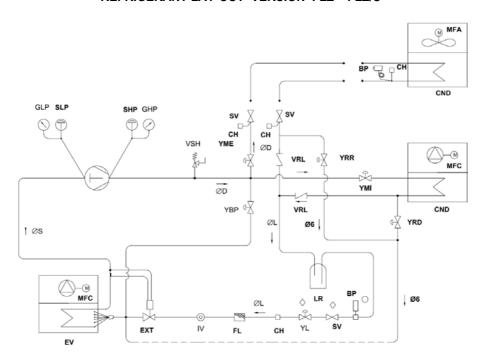
Refrigerant diameters lines for version FLZ

	Refrigerant diameters lines for version i EE							
Distance [m]	10		2	0	30			
Mod.	gas [mm]	Liquid [mm]	gas [mm]	Liquid [mm]	gas [mm]	Liquid [mm]		
560	22	15,88	22	18	28	18		
740	28	15,88	28	18	28	22		
940	35	15,88	35	18	35	22		

Liquid line refrigerant charge


= iquia inio ionigorane onal go										
Line liquid diameter	Refrigerant charge g/m	Line liquid diameter	Refrigerant charge g/m							
15,88 mm	175	22 mm	360							
18 mm	220									

Cooling capacity correction factors


Mod.	Refr. line 0 mt.	Refr. line = 10 mt.	Refr. line 20 mt.	Refr. line 30 mt.
FLZ	1	0,98	0,96	0,95

REFRIGERANT LAY-OUT VERSION FL-FLS

REFRIGERANT LAY-OUT VERSION FLZ - FLZ/S

CND	Condenser	FL	Liquid line filter	
СН	Charging	SV	Manual valve	
EXT	Expansion	MFC	Centrifugal fan	
EV	Evaporator	LR	Liquid receiver	
SHP	High pressure switch	VRL	One way valve	
YRD	Solenoid valve	YRR	Solenoid valve	
YMI	Solenoid valve	BP	Pressure transducer	
YME	Solenoid valve		Only for version "S"	

ELECTRICAL CONNECTIONS

The power supply must correspond to the electric nominal data (tension, phases, frequency) reported on the label in the front panel of the unit. Power connections must be made in accordance to the wiring diagram enclosed with the unit and in accordance to the norms in force. Power cable and line protection must be sized according to the specification reported on the wiring diagram enclosed with the unit.

WARNING: The line voltage fluctuations can not be more than $\pm 5\%$ of the nominal value, while the voltage unbalance between one phase and another can not exceed 2%. If those tolerances should not be respected, please contact our Company.

WARNING: Electric supply must be in the limits shown: in the opposite case warranty will terminate immediately. Before every operation on the electric section, be sure that the electric supply is disconnected.

START UP

Before start-up

- Check that all power cables are properly connected and all terminals are hardly fixed.
- The voltage at the phase R S T is the one shown in the unit labels.
- Check that there is not any refrigerant leakage.
- Check that crankcase heaters are powered correctly.
- Check that all water connections are properly installed and all indications on unit labels are observed.
- Before proceeding to start up check that all the cover panels are re-located in the proper position and locked with fastening screws.

WARNING: Crankcase heaters must be powered at least 12 hours before start up by closing the main switch (heaters are automatically supplied when main switch is closed). The crankcase heaters are working properly if after some minutes the compressor crankcase temperature is about 10÷15°C higher than ambient temperature.

WARNING: Never switch off the unit for temporary stop.

WARNING: Never modify internal wiring connections; warranty will be invalidated.

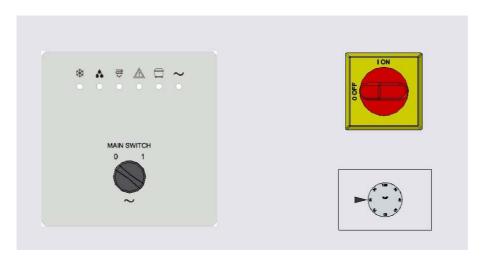
MESSA IN FUNZIONE

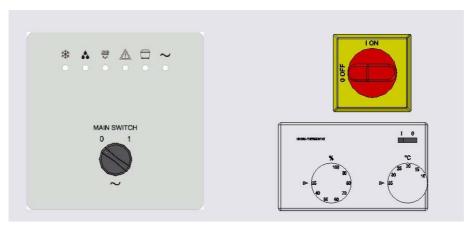
Before proceeding to start up close the main switch.

All the units are provided with microprocessor control that manages all the various functions of the unit.

The functions described below are applied both for local board control and remote panel control.

To start the unit turn the green switch ON (the inner led will light up).


- a) <u>Dehumidification only version</u>: activate humidity switch by rotating the knob o by pressing the instrument keyboard depending on the type of instrument installed;
- a) <u>Dehumidification and cooling Z version units</u>: activate humidity and temperature switch by rotating the knob o by pressing the instrument keyboard depending on the type of instrument installed;


If the green electrical supply led should not light up (see following page), please reverse two electrical phases on the connection to the main switch.

SIGNALLING LEDS PANEL

Units are provided with signalling lighting leds that indicate unit operational status. Below is reported a brief description of their meaning.

FL

FLZ

ATTENTION: the hygrostat and the thermostat are accessories.
They have to be ordered. They can be built-in (as in drawing above) or remote.

 <u>Electrical supply (green)</u>: indicates that green switch has been turned in On position and the unit is electrically supplied with the following meanings:

led ON: unit running;

led slowly blinking: unit turned off from remote

 Compressor led (green): indicates compressor status with the following meanings: led ON: compressor running;

led blinking: compressor time delay to start;

- Alarm led (red): indicates the unit alarm status according to the following meanings:

red led ON: high pressure alarm;

red led blinking: low pressure alarm;

red led and compressor led ON: compressor thermal overload alarm;

red led and defrost led blinking: maximum defrost cycle time overcome;

red led and defrost led alternatively blinking: operating threshold limit overcome or NTC probe failure:

 <u>Defrost led (yellow)</u>: indicates that the units is executing the defrost cycle; led fastly blinking: execution of drop cycle at the defrost end.

<u>Dehumidification led (green)</u>: indicates that the control is requiring dehumidification operating mode;

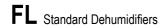
Cooling mode (green): indicates that the control is requiring cooling system operating mode.

UNIT SWITCH OFF

To stop the unit, turn to the OFF position the green switch. Its internal led will be turned off.

Warning: never switch off the unit (for temporary stop), opening the main switch: this component should be used only to disconnect the unit from power supply when the current is not passing through, i.e. when the unit is in OFF mode.

Controls during unit operation


- Check the fans rotation. If the rotation is incorrect, disconnect the main switch and change over any two phases of the incoming main supply to reverse motor rotation (only for units with three-phase fan motors).
- Check that the air speed through the evaporator coil is not higher than 1,5 2 m/s to grant a high dehumidification performance.

ATTENTION: If the air speeds through the evaporating coil exceeds 2 m/s, the dehumidification capacity of the unit is highly reduced and the required environment conditions can not be respected !!!.

REFRIGERANT CHARGE CHECKING

- After few hours the unit is working, check that sight glass shows a green colour core: if the core is yellow moisture would be present in the circuit. In this case it is necessary circuit dehydration to be carried out by qualified people only. Check that at the sight glass there is no continuous vapour bubbles presence. In this case additional refrigerant charge could be required. It is however allowed the presence of few vapour bubbles.
- Few minutes after the start up, working on summer operating mode (cooling), check that condensing temperature, is approximately 15 °C higher than condenser inlet air temperature. Check moreover that evaporation temperature is about 5 °C lower than the evaporator outlet temperature.
- Check that refrigerant superheat on the evaporator is about 5-7 °C
- Check if refrigerant sub-cooling on the condenser is about 5-7 °C.

POWER SAVINGS

To reduce power consumption it is advisable to refer to the following notes:

- Be sure that room in which unit should operate, has doors and windows firmly closed;
- Set the humidity control switch to the proper value: lower set values than necessary (even few points) may cause great capacity loss with consequently longer operating periods: it is advisable to set humidity values below 60% only if strictly necessary.

Any routine or not-routine maintenance operation shall be carried out when the equipment has been shut down, disconnected from electric and pneumatic power source and after its pneumatic system has been discharged.

MAINTENANCE AND PERIODIC CHECKS

- It is a good rule to carry on periodic checks in order to verify the correct working of the unit:
- Check that safety and control devices are working correctly (monthly).
- Check all the terminals on the electric board and on the compressor are well locked. Periodic cleaning of the sliding terminals of the contactors should be done: if any damage is found, please replace the contactors (monthly).
- Check there is no oil leakage from compressor (monthly).
- Check compressor crankcase heater proper supply and functioning (monthly: low temperature units only).
- Clean draining pan and pipeline (monthly).
- Clean finned coils filters with compressed air in the opposite direction of the airflow. If filters should be fully clogged, clean them with a water jet (monthly or more frequently if the unit operates on a dusty environment).
- -Check mounting of fan blades and their balancing (every 4 months).
- Check the unit is not too noisy every 4 months).

REFRIGERANT CIRCUIT REPAIR

In the case that refrigerant circuit should be discharged, all the refrigerant must be recovered with proper machines. The system must be charged with nitrogen, using a gas bottle with a pressure reducing valve, until 15 bar pressure is reached. Any eventual leakage must be searched with a bubble leak finder. In case bubbles appear discharge the circuit before welding with proper alloys.

WARNING: Never use oxygen instead of nitrogen: explosions may occur.

ENVIRONMENT PROTECTION

According to European norms dealing with the use of depleting stratospheric ozone substances, it is forbidden to release refrigerants fluids in the atmosphere. They must be redelivered to the seller or to proper gathering points at the end of their operating life. Refrigerant R407C is mentioned among controlled substances and for this reason it must be subjected to the mentioned norms. A particular care is recommended during service operations in order to reduce as much as possible any refrigerant loss.

UNIT OUT OF SERVICE

Once the unit is arrived at the end of its life and needs to be removed or replaced, the following operations are recommended:

- the unit refrigerant has to be recovered by trained people and sent to proper collecting centre;
- compressor lubricating oil has to be recovered and sent to proper collecting centre;

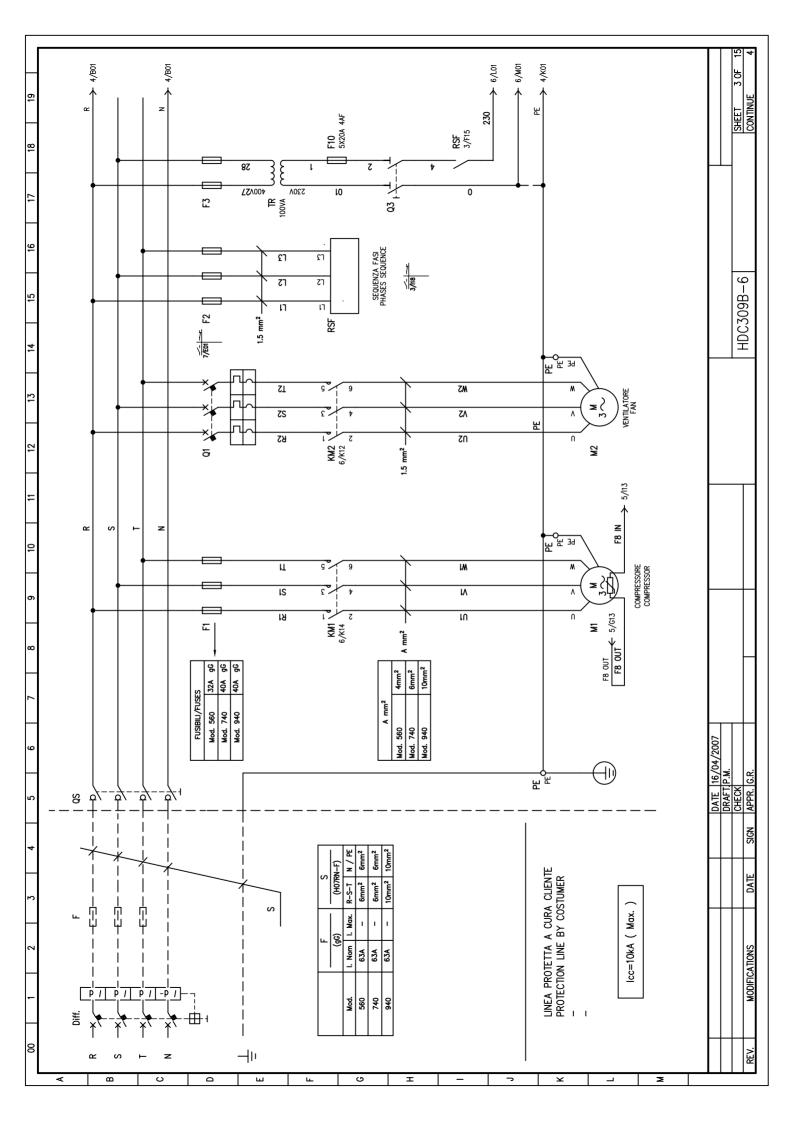
the frame and various components, if not usable any longer, have to be dismantled and divided according to their nature; particularly copper and aluminium, which are present in conspicuous quantity in the unit. These operations allow easy material recover and recycling process, reducing environmental impact.

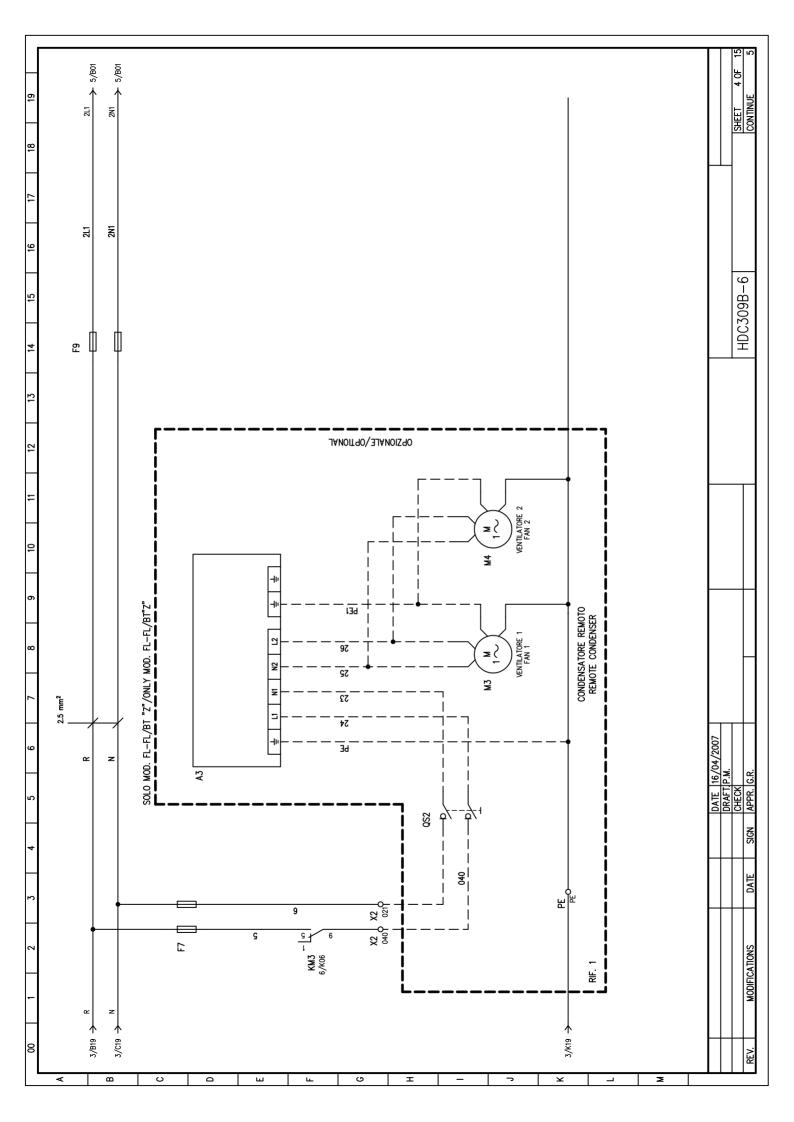
.

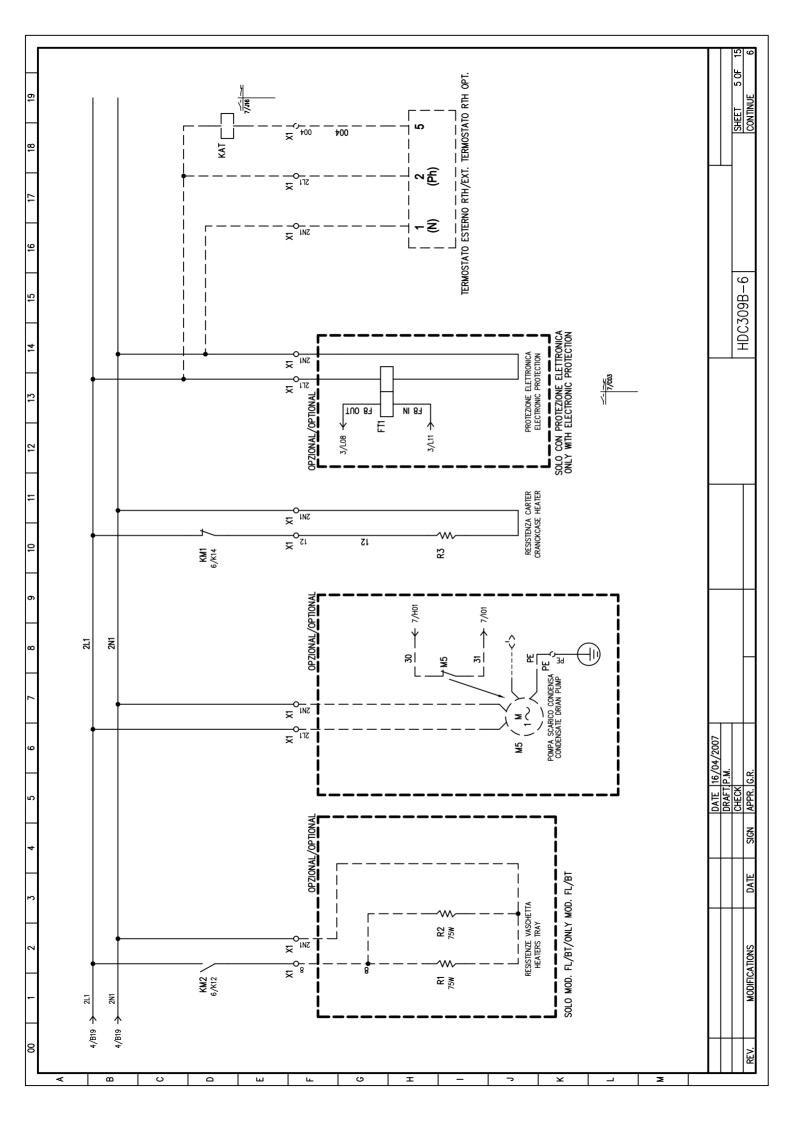
UNIT UNDER ALARM

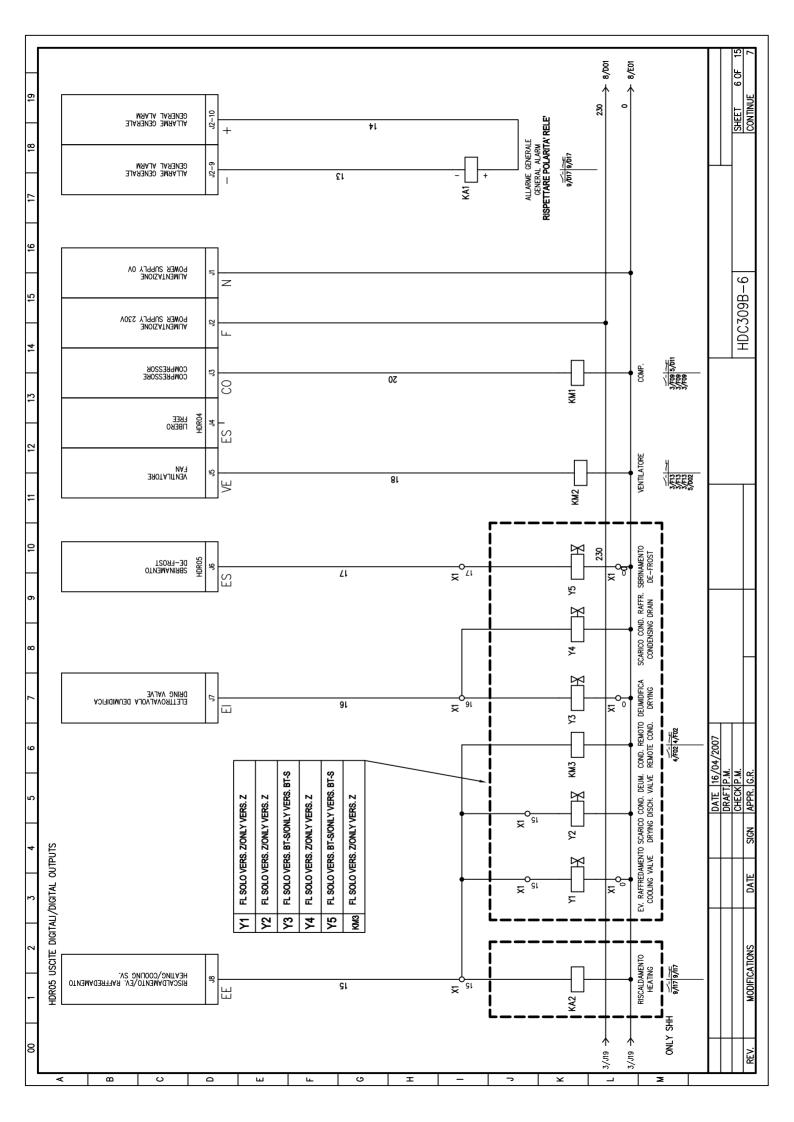
When red led is lighted up the unit is stopped and set under alarm condition.

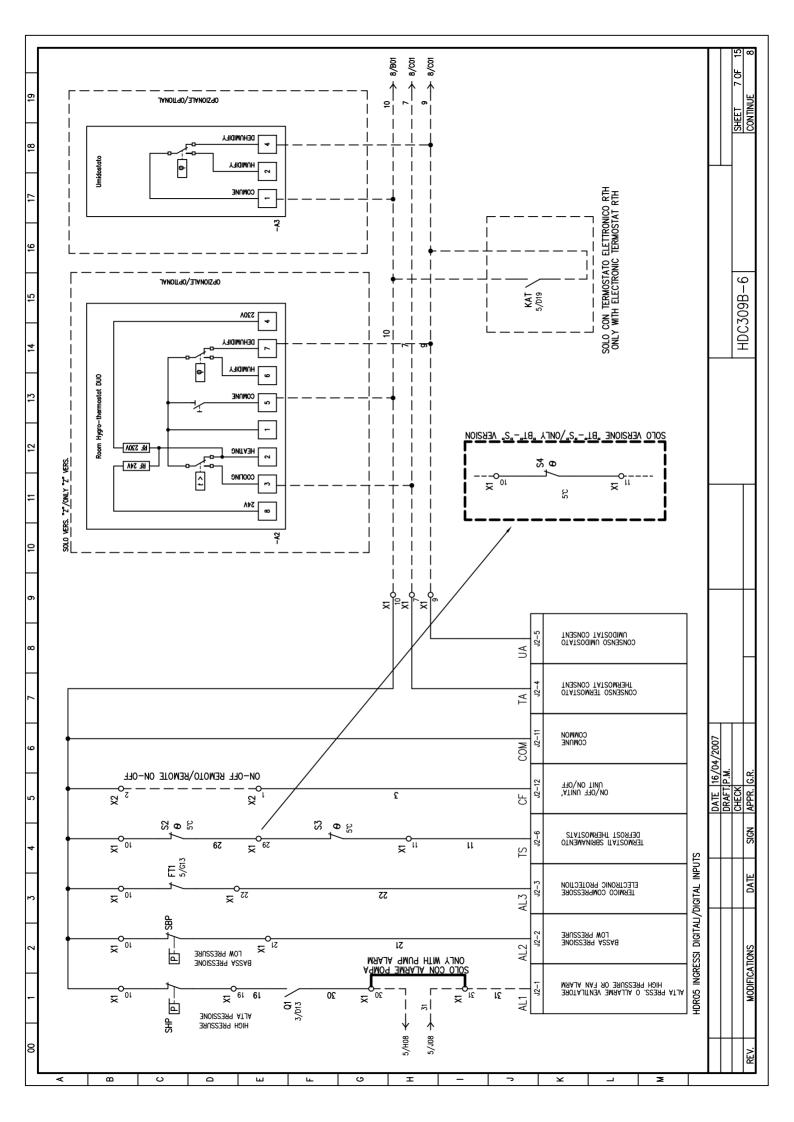
Concerning the solutions, it is necessary to take an extreme care on the actions to adopt: an excessive confidence may cause serious accidents to inexperienced people. It is advisable, once the cause is detected, to contact our servicing people or trained people only.

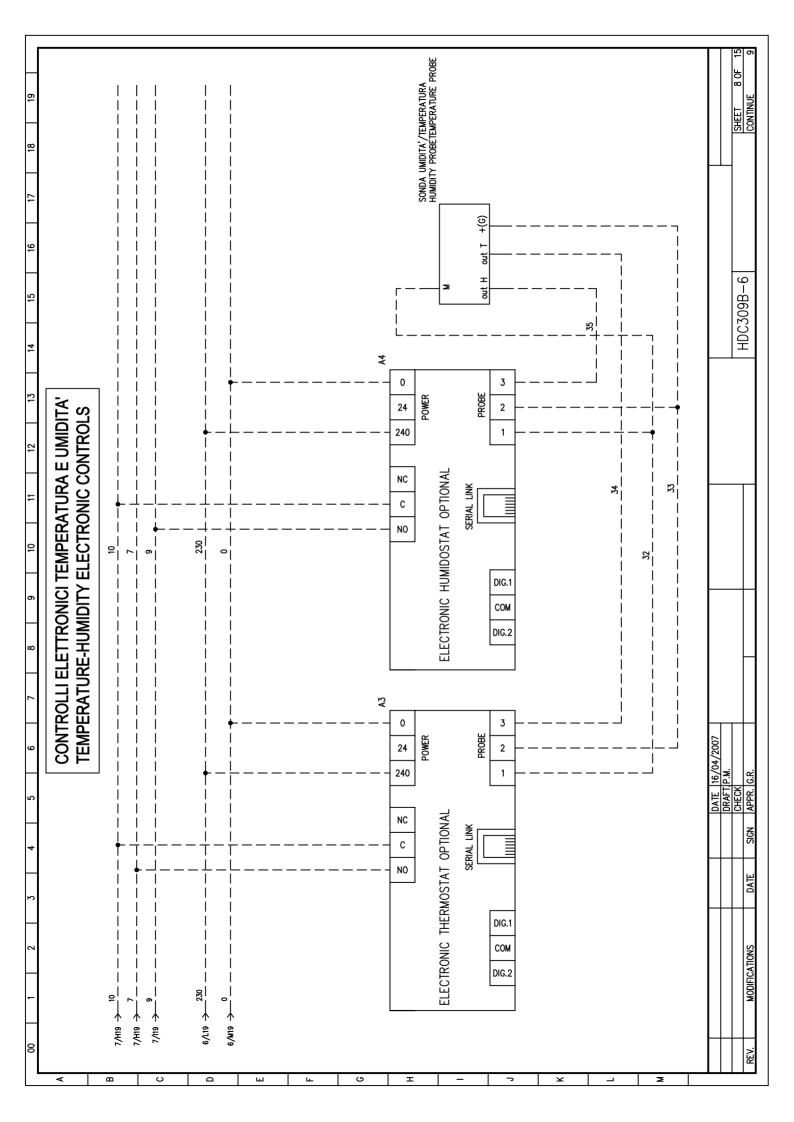

TROUBLE SHOOTING


In the following pages are reported the most common troubles that can cause the unit stop or an incorrect operation

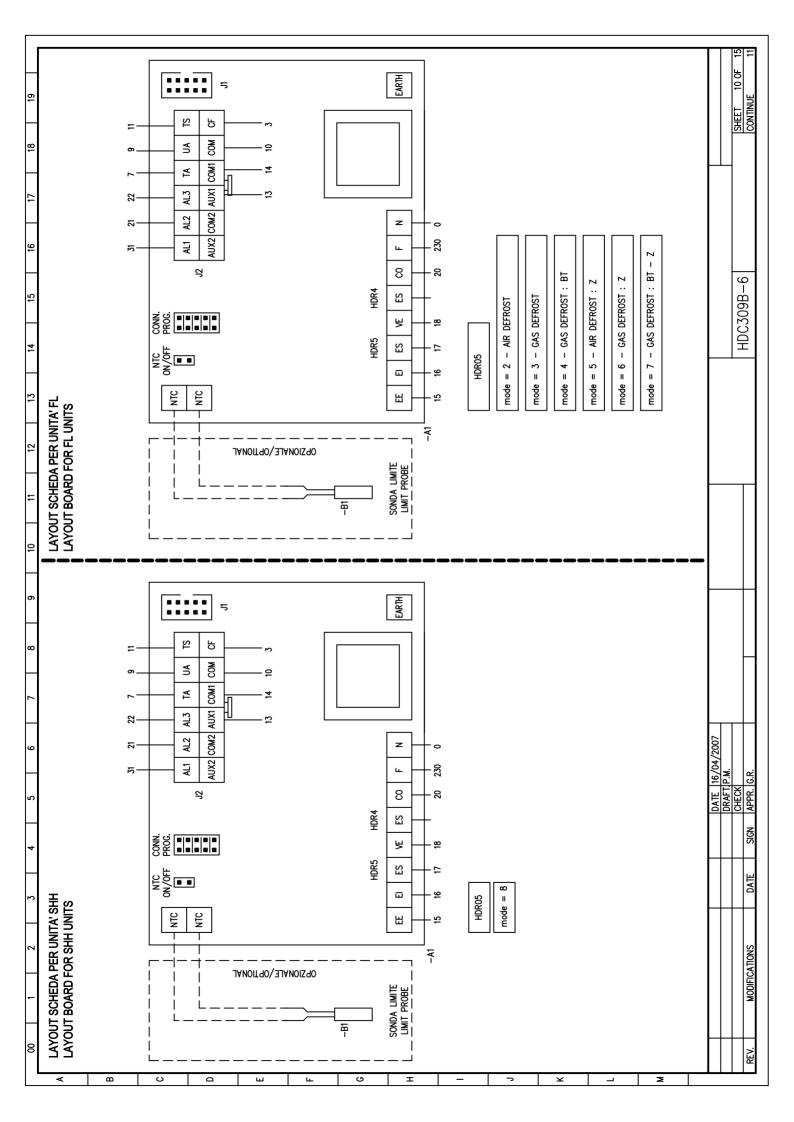

PROBLEM	LED ON	PROBABLE CAUSE	CORRECTIVE ACTION
	None	Power supply missing fuses open	Provide power supply replace fuses
	Power supply led	Humidistat on set	Set a lower set point
Unit does not start but alarm red led is off	Power supply led, dehumidification led Power supply led, defrost led	Compressor thermal protection enabled, compressor defective	Let the compressor cool down, replace compressor defective
	None	Electronic board or led board defective	Replace defective board
Fan starts, compressor does not start, but red alarm led is	Power supply led, dehumidification led	Compressor thermal protection enabled, compressor defective	Let the compressor cool down, replace the compressor defective
off	any	Electronic board or led board defective	Replace defective board
		Air filters clogged	Clean filters and reset unit
		Low refrigerant charge	Charge the system
Fan starts, compressor does not start but red alarm led is on	Red alarm led	Open panel, low air flow, suction side obstructed, high pressure switch on	Close the panel, clear suction side, reset high pressure switch
	any	Electronic board or led board defective	Replace defective board
Fan starts, compressor does not start, but red alarm is	Red alarm led	Defrost thermostat detective, low refrigerant charge	Replace thermostat, charge the system.
blinking	any	Electronic board or led board defective	Replace defective board

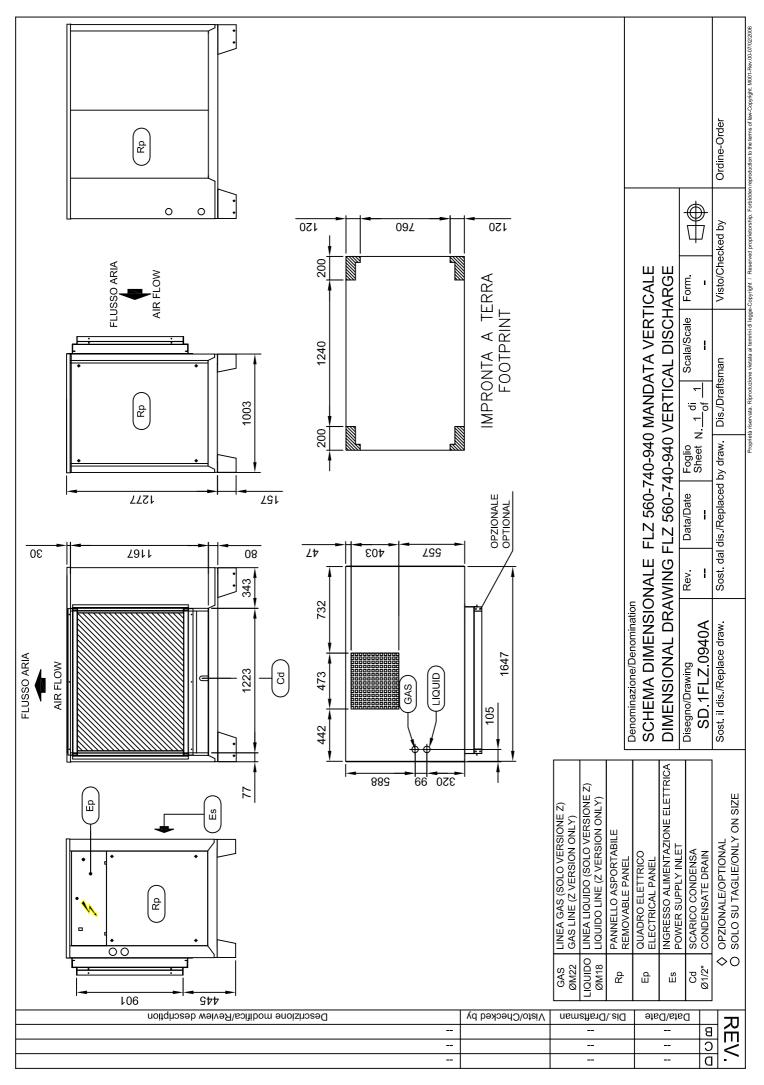

STD. PREVALENZA / STD. PREVALENCE Max
ALIM. ELECTRIQUE ELEKTROANSCHLUSS

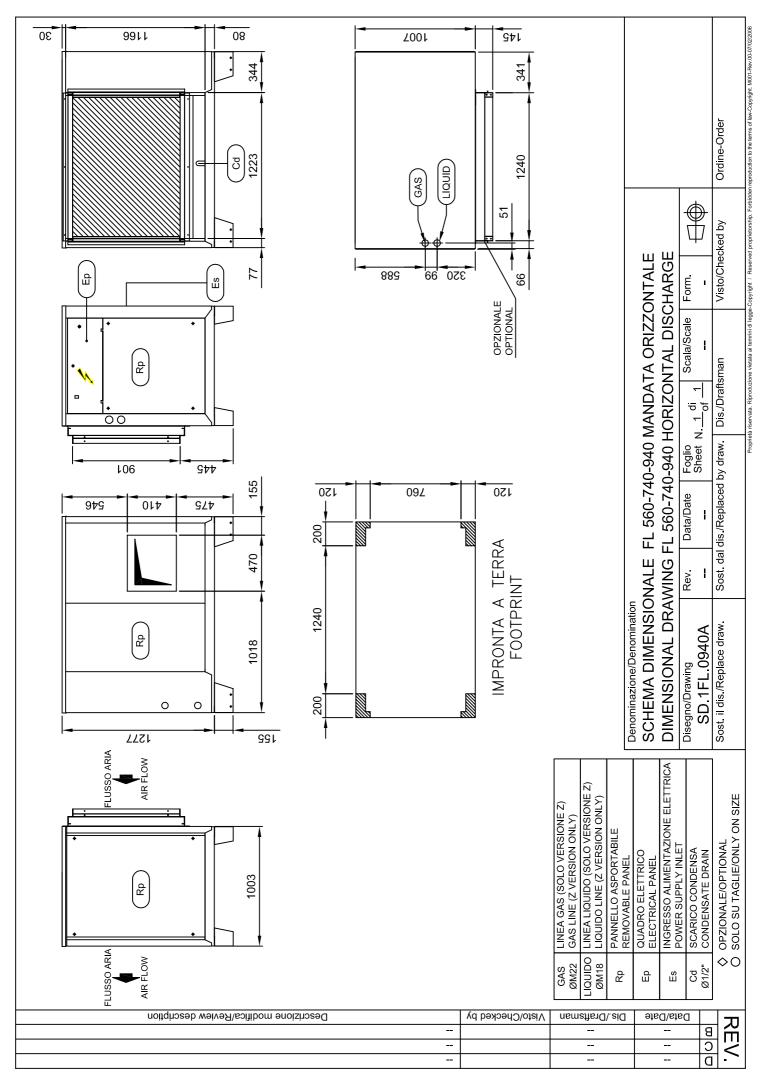

		I (А)	167	34	4,75	4,75	ı	∓	Ling	167	34	4,75	4,75	ı	
	940 / FL	Pw (15	2,2	0,5	0,5	60'0	940 / SHH	F W N	15	2,2	0,5	0,5	60'0	
ACE.	ő	(A)	24,1	4,9	2,5	2,5	8,0	ŏ) (A)	24,1	4,9	2,5	2,5	8,0	
REVALEN		A (A	127	21,1	4,75	4,75	ı		a, (A)	127	21,1	4,75	4,75	1	
/ HIGH. PREVALENCE	740 / FL	Pw)	10,9	1,5	0,5	0,5	60'0	740 /SHH	Pw (10,9	1,5	0,5	2,0	60'0	
	7.) (A)	19,4	3,52	2,5	2,5	8,0	7) (A)	19,4	3,52	2,5	2,5	8,0	
PREVALENZA		A (A ()	66	16,5	4,75	4,75	ı	HS.	Lis (A)	66	16,5	4,75	4,75	ı	
ALTA.	560 / FL	Pw (kW)	8,8	1,	0,5	2,0	60'0	ts / 099	Pw (kW)	8,8	1,1	0,5	5,0	60'0	
	5	(A)	16	2,75	2,5	2,5	8,0	100	(A)	16	2,75	2,5	2,5	8,0	
	MOD.		- M1	-M2	-M3	-M4	-M5	MOD.		-M1	-M2	-M3	-M4	-M5	
	1														l
	/ FL	(A)	167	21,1	4,3	4,3	1	TB.	A)	167	21,1	4,75	4,75		
	940 /	Pw (kW	15	1,5	0,59	0,59	60'0	940 /	P	15	1,5	0,5	0,5	0,0	
LENCE			24,1	3,52	2,7	2,7	0,8		- X	24,1	3,52	2,5	2,5	0,8	
PREVALENCE	. 년	Lr	127	16,5	4,75	4,75	ı	ΕBT	_ (127	16,5	4,75	4,75	ı	
, / STD.	740 /	Pw (kW	10,9	1,1	0,5	0,5	60'0	740 /	P	10,9	1,1	0,5	0,5	0,09	
PREVALENZA		_	19,4	2,75	5 2,5	5 2,5	0,8			19,4	2,75	2,5	, 2,5	0,8	
STD. PRE	/ FL	(A	66	5 11,6	4,75	4,75	1	/ BT	A)	66	9,11	4,75	4,75	1	
S	260 /	P. KW	8,8	3 0,75	0,5	0,5	60'0	/ 099	P	8,8	5 0,75	0,5	0,5	0,0	
		_ A	16	1,93	2,5	1 2,5	9,0		<u>*</u> ∀	16	1,93	2,5	. 2,5	0,8	
	MOD.		M_	-M2	-M3	-M4	-M5	MOD,		-M1	-M2	-M3	-M4	-M5	

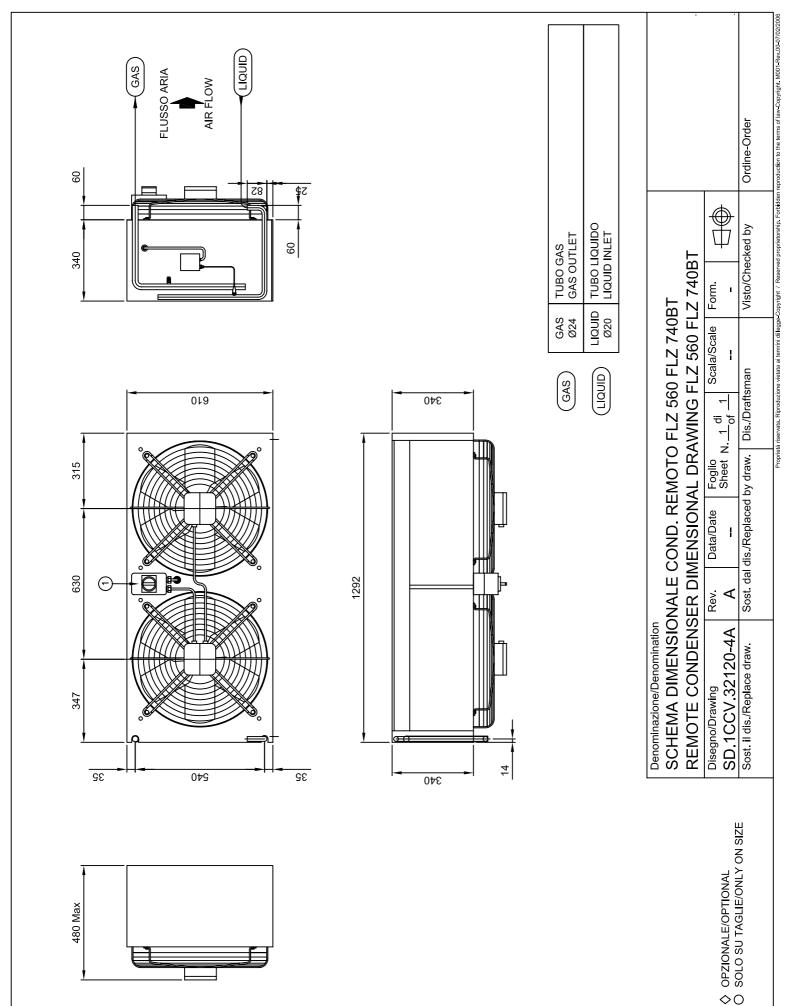






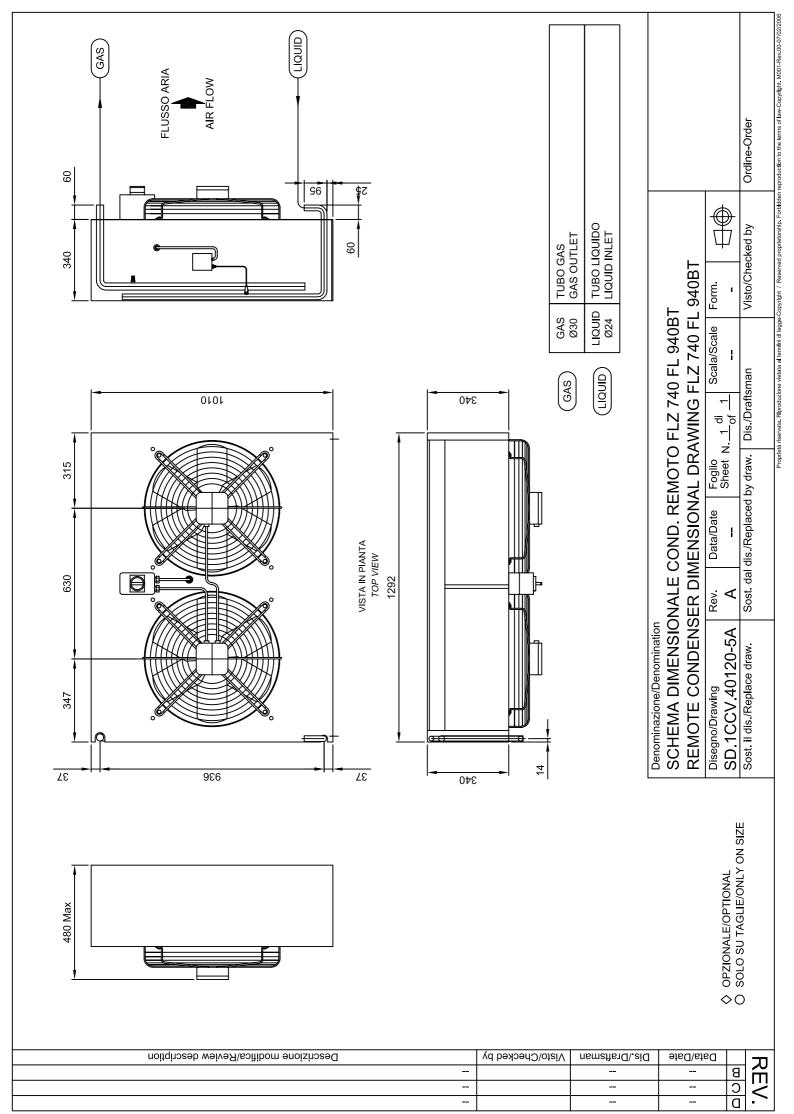


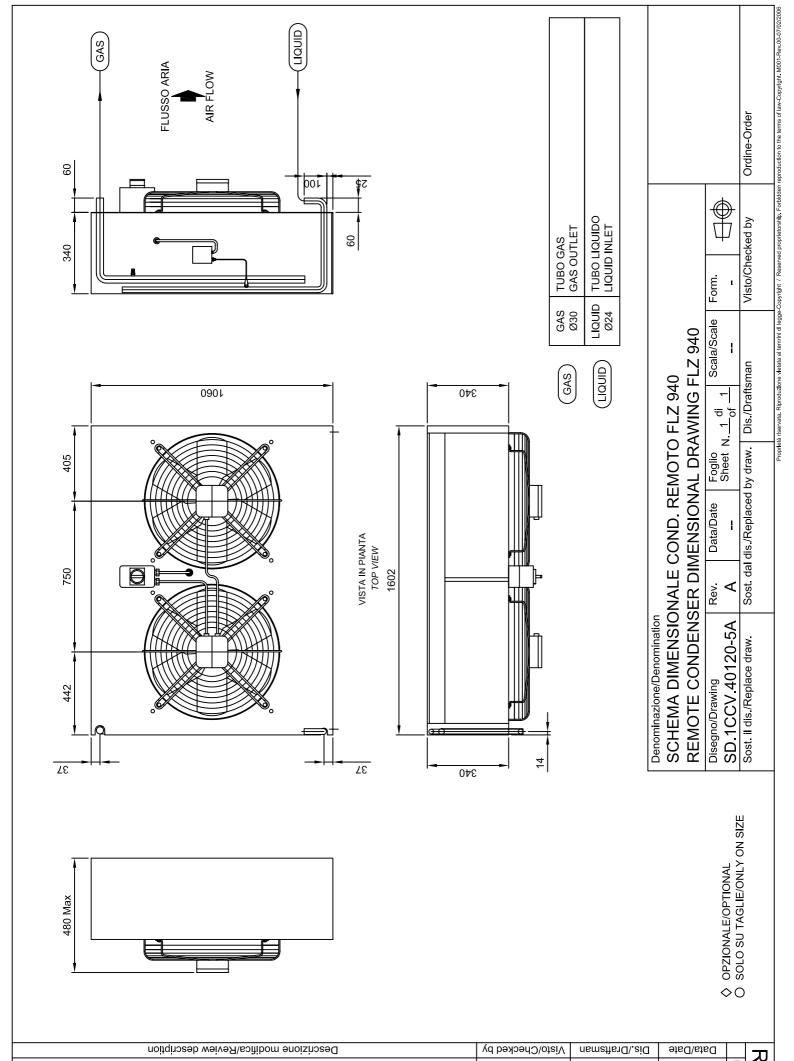




L	00	2	3 4 5 6	7 8 9	10 11 12	13 14 15 16 17	17 18	19	
•	560940	Sigla	Descrizione	Note tecniche	Codice articolo	Descrizione articolo	Quantità U.M.	M. Posizione	au
τ		BP1	SONDA PRESSIONE COND.	420mA			1	10/D08	
		B1/2	SONDE NTC				1	10/010	
<u> </u>		FI		FUSIBILI A CURA HIDROS	2303038	Portaf sez.BCH 14X51 40A 690V	1 PCE	£ 2/C15	
		F2		ITALWEBER "1A" Gg	2303038	Portaf sez.BCH 10X38 32A 690V	1 PCE	£ 2/C15	
ပ		F3		ITALWEBER "1A" Gg	2302038	Portaf sez.BCH 10X38 32A 690V	1 PCE	E 2/C15	
		F7		ITALWEBER "10A" Gg	2302038	Portaf sez.BCH 10X38 32A 690V	1 PCE	E 2/C15	
٥		F9		ITALWEBER "6A" Gg	2302038	Portaf sez.BCH 10X38 32A 690V	1 PCE	E 2/C15	
		KA2	RISCALDAMENTO (A CURA HIDROS)	FINDER	405280230	MINI RELÈ PER C.S.	1 PCE	E 6/117	
L		KA1	ALLARME GENERALE	FINDER	405290120000	MINI RELÈ PER C.S. IN CC	1 PCE	E 6/J18	
ш		KM1		MOELLER	276422	DILA-XHI20 CONTATTI AUS. 2NA	1 PCE	E 5/C12	
		KM1	COMP.	11kw MOELLER	277140	DILM25-01(220V50HZ,240V60HZ) CONT. 11KW	1 PCE	E 7/102	
LL.		KM2	VENTILATORE	MOELLER	276698	DILM9-10 (220V50HZ,240V60HZ) CONT. 4KW	1 PCE	E 7/J10	
		KM3	FAN (A CURA HIDROS)	FINDER	6682		1 PCE	E 7/J10	
ပ		RSF	SEQUANZA FASE	GAVAZZI	DPA51		1	5/H14	
		TR	TRASF.	100VA			1 PCE	E 7/J10	
I		SO	TRASF.	ABB	OT 45 E4		1 PCE	E 7/J10	
		A1	CONTROLLO	HDR05			1	5/H14	
_									
		Q1 (MOD.560)	Q1 (MOD.560) PREVALENZA STD. (A CURA HIDROS)	MOELLER	72736	PKZM0-2.5	1 PCE	£ 2/C15	
7		Q1 (MOD.560)	PREVALENZA MAGGIORATA (A CURA HIDROS)	MOELLER	72737	PKZM0-4	1 PCI	E 2/C15	
		٥	PREVALENZA STD. (A CURA HIDROS)	MOELLER	72737	PKZMO-4	1 PCE	E 2/C15	
¥		٥١	PREVALENZA MAGGIORATA (A CURA HIDROS)	MOELLER	72738	PKZMO-6.3	1 PCE	E 2/C15	
_									
J									
Σ									
			DATE 16/04/2007						
	BEV MO	MODIFICATIONS	DAATE SIGN APPR G.P.			HDC309B-6	<u>동</u>	SHEET 14 OF	15
				- - - -		-			2

17 18 19	- Bezeichnung -																																									SHFFT 15.0F 15	إإ	
12 13 14 15 16	— Denomination —																																									0 0000	HDC:203B-e	
11 01 8 10 11	- Denomination -	ELECTRONIC CONTROL	HYGRO-THERMOSTAT	SPEED REGULATOR	COMPRESSOR FILES	PHASE SEQUENCE RELAY FUSES	183	EELCTRONIC PROTECTION	TRANSFORMER FUSES	AUXILIARY FUSE	COMPRESSOR CONTACTOR	SEQUENCE RELAY FUSES	FAN CONTROLOR PENOTE CONDENSED RELAY	CENERAL ALARM RELAY	COMPRESSOR	EAN	FAN	FAN	PUMP	ISOLATOR	FAN AUTOMATIC SWITCH	ISOLATOR	ON - OFF SWITCH	CARTER HEATER	HEALEK HEATER	HIGH PRESSURE SWITCH	LOW PRESSURE SWITCH	DEFROST THERMOSTAT	DEFROST THERMOSTAT	TRANSFORMER	TERMINAL STRIP	TERMINAL STRIP	DEFROST VALVE	DATING VALVE	COND. DISCHARGE VALVE	DRYING DISCHARGE VALVE								
2 3 4 5 6	- Denominazione -	CONTROLLO ELETTRONICO	TERMO-IGROSTATO .	REGOLATORE DI VELOCITÀ	SUNDA LIMITE	FUSIBILI RELE" SEQUENZA FASI	FUSIBILI CONDENSATORE REMOTO	PROTEZIONE ELETTRONICA	FUSIBILI TRASFORMATORE	FUSIBILE AUSILIARI	CONTATTORE COMPRESSORE	RELE' SEQUENZA FASI	PEI E' CONDENSATORE REMOTO	REIF ONDERSTER	COMPRESSORE	VENTILATORE	VENTILATORE	VENTILATORE	POMPA	SEZIONATORE	INTERRUTTORE AUTOMATICO VENTILATORE		Interrutore on — Off	RESISTENZA CARTER	MESISTENZA BESISTENZA	PRESSOSTATO ALTA PRESSIONE	PRESSOSTATO BASSA PRESSIONE	TERMOSTATO SBRINAMENTO	TERMOSTATO SBRINAMENTO	TRASFORMATORE	MORSETTIERA	MORSETTIERA	ELETTROVALVOLA SBRINAMENTO	FLETIKOVALVOLA DEUMIDIFICA	ELETTROVALVOLA SCARICO CONDENSA	ELETTROVALVOLA SCARICO DEUMIDIFICA					DATE 16/04/2007	DRAFT.P.M.	DATE SIGN	
00	SIGLA POSIZIONE INITIALS POSIZION SIGLE POSITION KENNZEIC ORTEN	B -A1		-A3	9 5	C E2	1	F9	D F3		KM1		E KMZ	KA1	- W	-M2		-M4	-M5	SD 9		OS.	03	н 83	η 20	3. 3.	SLP		S3	Æ	LX-	-X2	55 25		*	72	1		X				REV. MODIFICATIONS	





Descrizione modifica/Review description

Ν	Dis./Draftsman	Data/Date		П	
			B	\mathbb{A}	
			0		
			П		
	,				

sto/Checked by

HIDROS srl Via dell'Industria 5 35020 Brugine (Pd) Tel.+390-49-9731022 Fax.+390-49-5806928

Info@hidros.it www.hidros.it

Technical data shown in this booklet are not binding.

HIDROS SRL. shall have the right to introduce at any time whatever modifications necessari to the improvement of the product.

MTFLGB REV.072008